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The constant initial speed of propagation (V ) of heavy gravity currents, of density ρC ,
released from behind a lock and along the bottom boundary of a tank containing a
linearly stratified fluid has been measured experimentally and calculated numerically.
The density difference, bottom to top, of the stratification is (ρb− ρ0) and its intrinsic
frequency is N. For a given ratio of the depth of released fluid (h) to total depth (H)
it has been found that the dimensionless internal Froude number, Fr = V/NH , is
independent of the length of the lock and is a logarithmic function of a parameter
R = (ρC − ρ0)/(ρb − ρ0), except at small values of h/H and R close to unity. This
parameter, R, is one possible measure of the relative strength of the current (ρC − ρ0)
and stratification (ρb−ρ0). The distance propagated by the current before this constant
velocity regime ended (Xtr), scaled by h, has been found to be a unique function of
Fr for all states tested. After this phase of the motion, for subcritical values of Fr, i.e.
less than 1/π, internal wave interactions with the current resulted in an oscillation of
the velocity of its leading edge. For supercritical values, velocity decay was monotonic
for the geometries tested. A two-dimensional numerical model incorporating a no-slip
bottom boundary condition has been found to agree with the experimental velocity
magnitudes to within ±1.5%.

1. Introduction
The subject of gravity current motion, dynamics and structure is a relatively

old one with many applications to industrial and natural flows, as discussed in
the monographs by Simpson (1997) for example. The background for the present
experiments is discussed briefly in these reviews. Here we present a more complete set
of new results but also include some of the older ones to be found in these monographs
and the original experiments from which they were derived (Simpson 1997, §§ 13.2.1.
and 13.2.2.). Also, numerical modelling is carried out in two dimensions with a no-
slip condition at the bottom boundary. A dimensionless parameter is introduced that
incorporates the dependence of the motion on the current density and the ambient
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stratification. At the same time the aspect ratio [length (L)/height (h)] of the volume
of released fluid does not appear to be a relevant parameter, at least for the range of
studied here. Results are presented from which it is possible to calculate the speed of
propagation for all combinations of the relevant independent variables.

As background for the present stratified cases we discuss first the ‘classical’ case, i.e.
the propagation of gravity currents, from fixed volume releases, along the horizontal
floor of a tank of height, H , containing a homogeneous fluid of density, ρA. Basic
knowledge of these commonly observed entities is summarized well in the reference
given above supplemented by more detailed commentary in Simpson (1972), Britter
& Simpson (1978, 1981), Simpson & Britter (1979), Huppert & Simpson (1980) and
Rottman & Simpson (1983) for example. The initial volume of heavy fluid, of density,
ρC , has the shape of a right parallelepiped of length, L, height, h, and width, W . Here,
based on the results of Rottman & Simpson (1983), after a brief acceleration phase,
the velocity of the nose of the current becomes constant for any given experiment at
a value, V , given by

V = k(g′h)1/2, (1)

where g′ = g(ρC − ρA)/ρA, g is the acceleration due to gravity and k is a quantity,
given in Rottman & Simpson (1983), that depends on h/H . An alternative description
gives

V = f(φ)(g′a)1/2,

where φ = a/H , a is the measured height of the nose of the current and f(φ) is given
in Huppert & Simpson (1980), in which a is designated as h0.

In this phase of the motion the velocity is controlled by conditions at the nose and
the flow is not self-similar. Upon the initial release a wave or bore is generated, on the
interface between the current and its surroundings, that propagates backwards, i.e. in
a direction opposite to the main current, reflects from the endwall of the channel and
then travels, as a wave of depression, towards the nose of the current (Rottman &
Simpson 1983). Upon interacting with the nose the wave changes so that its speed of
propagation is now given by

x ≈ t2/3 or V ≈ t−1/3.

Here x is the distance of the leading edge of the current from the downstream end
of the initially dammed section (figure 1) and t the time. In this phase of motion the
flow is self-similar and while the Froude number of the nose, scaled on the density
difference and a suitable measure of the variable height of the current, is constant
it does not control the motion. This is determined by a force balance between the
horizontal buoyancy gradient and inertial force associated with the whole current,
together with volume conservation (see e.g. Huppert 1982; Didden & Maxworthy
1982). The transition from (1) to this state takes place after the current has travelled
a distance of approximately x/L ≈ 10 (Rottman & Simpson 1983).

Our purpose in what follows is to determine how this sequence is modified when
the heavy fluid is released at the lower boundary of a tank containing a linearly
stratified ambient fluid; that is, how the internal waves produced by the lock release
interact with the current to change its characteristics and how it, in turn, may change
the wave field. In one limit, Wu (1969), Schooley & Hughes (1972) and Amen &
Maxworthy (1980) released mixed fluid, with the same density as the central layer, at
the centre plane of a stratified fluid contained in a long narrow box, and observed the
evolution of the resulting current, the internal waves generated and the interaction
between the two. In the present case (see above and § 5), except for questions of the
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Figure 1. Apparatus. Definition of the various geometric quantities used in this study.

subtle differences between slip and no-slip boundary conditions at, and asymmetry
about, the centreplane in the former case, this would be equivalent to releasing fluid
that has the same density as the bottom of the stratified fluid. In the other limit
one might expect that when the density of the release is very much larger than
that at the bottom of the stratification the result would be a gravity current that is
indistinguishable from a ‘classical’ current into a fluid with a density equal to the
average in the stratified layer. More recently Felix (2000) has presented an analytic
solution for leading-edge motion in a stratified fluid; however there appears to be
no clear-cut way to relate his solution to the physical situation considered in the
present work. Further, gravity current propagation and solitary wave formation at
the mid-level of a hyperbolic tangent density distribution was studied by Maxworthy
(1980), while Manins (1976) considered a constant inflow into the centreplane of a
linearly stratified fluid.

2. Scaling of the gravity current motion in a stratified fluid
The early experiments of Simpson (1997) were run under a variety of different

conditions with N varying from 0.74 to 1.99 and a number of different values for
the height of the lock (h) and the initial density of the current (ρC), while H was
kept constant at a value of 15 cm. Here N2 = (g/ρ0)(−dρ/dz) = g(ρb − ρ0)/ρ0H,
z is the vertical coordinate, g the acceleration due to gravity, ρ the fluid density and
ρ0 a reference density, in this case that at the surface, z = H . In these preliminary
experiments there were not enough cases close to any particular value of N to
determine the possible parametric dependence of the initial constant velocity (V ), as
measured by its Froude number (Fr), on this quantity alone, where

Fr = V/NH. (2)

It was therefore necessary to find a dimensionless ratio that incorporated these
quantities and that allowed one to at least reduce the data for a particular lock depth
(h) to one curve. Physically, one can justify the final results, to be presented in § 5,
by realising that one possible measure of the effective density difference driving the
current is (ρC −ρ0), while the magnitude of the stratification is measured by (ρb−ρ0),
see figure 1. The ratio between these density differences, R, is then a dimensionless
measure of the relative strengths of the current and the stratification:

R = (ρC − ρ0)/(ρb − ρ0) = N2
C/N

2. (3)

Here N2
C = g(ρC − ρ0)/ρ0H , so that NC is a fictitious or effective buoyancy frequency

calculated using the density of the fluid initially behind the lock. Other forms for
a ratio of the magnitude of forcing to stratification have been tested as well. For



374 T. Maxworthy, J. Leilich, J. E. Simpson and E. H. Meiburg

example in (3) any value of reference density between ρb and ρ0, in particular ρh, the
density at the height h, could have been used to reduce the data. This possibility was
tested in Leilich (2000) where a single, separate curve was generated for each value
of h/H , as also occurred when using (3). Since no single, simple combination was
found to give a complete reduction of the data to a single curve, equation (3) was
finally chosen since it gave the most compact and mathematically straightforward
data reduction, as will be seen. Note that it is necessary to use the reference height at
which the reference density is chosen in defining NC and N.

One would expect, in the limit of large R, that the current would resemble one
propagating into a fluid of density (ρb + ρ0)/2. Using the results of Rottman &
Simpson (1983) with the density difference given by

[ρC − (ρb + ρ0)/2]

one finds, after some trivial algebra, a Froude number given, for large R, by

FrLR = k{[h/2H][2R − 1]}1/2 ≈ k{[h/H][R]}1/2, (4)

where k is the experimentally determined function of h/H given by Rottman &
Simpson (1983) in their figure 9. See equation (1). The values of k used here were
taken from a straight line fit to the experimental points on that plot and are, for the
values of h/H used here, 1/3, 1/2, 2/3 and 1, are respectively 0.59, 0.55, 0.51 and
0.45. This result, equation (4), will be compared with the experimental results in what
follows. Note that the second result given in (4), for R very much greater than unity,
is the same as if the current were propagating into a fluid of density ρ0.

3. Experimental apparatus and procedure
A fluid with a linear density profile was set up in a tank 244 cm long (the

x-direction), 20 cm wide (the y-direction) and 30 cm deep (the z-direction), figure 1,
using the Oster (1965) method. This method introduces increasingly less dense fluid
at the surface through a floating, foam-bottomed diffuser. Thin, constant-density dye
layers were placed at various levels within the stratification by introducing the dye
into the diffuser when the fluid surface was at appropriate levels. A gravity current of
appropriate density was released from behind a lock gate that was either 20 or 40 cm
from one end of the tank. The shape and rate of advance of the resultant gravity
current were recorded by a combination of still photography and video. In order
to reduce parallax effects and provide a larger image the video camera was towed
on a carriage at the speed of the front. In the new experiments reported here two
values of N (approximately 1.40 s−1 and 1.98 s−1), four values of h/H (1/3, 1/2, 2/3
and 1, while H was, again, kept constant at 15 cm), two values of L (resulting in six
values of L/h) and many values of ρC were used, in order to check the validity of the
scaling given in § 2. A table of all the experimental values and some of the dependent
variables is given in Appendix A.

4. Numerical procedure
In order to compare with the experimentally obtained results, we performed

high-resolution two-dimensional simulations of the dimensionless system of gov-
erning equations in the streamfunction (ψ) and vorticity (ω) formulation in the
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Boussinesq limit:
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All terms in the equations have been made dimensionless using the channel height
H , the density at the surface, ρ0 and the velocity scale NH , and the summation
convention has been used. Gr is the Grashof number NH3/ν, a measure of the ratio
between buoyancy forces and viscous forces, and Sc is the Schmidt Number ν/D.
Here D is the coefficient of molecular diffusivity and ν the kinematic viscosity, ρ the
local dimensionless density of the fluid, ui the dimensionless fluid velocity vector and
xi the dimensionless Cartesian coordinate axes. Since the computations were carried
out in two dimensions only values of i of 1 and 2 were used.

No-slip boundary conditions were specified along the lower and upper walls. The
vertical endwalls, however, did allow for slip, thereby enabling the employment of
Fourier series expansions of the variables in the horizontal direction. Tests performed
by Härtel, Meiburg & Necker (2000) have demonstrated that this slip condition does
not affect the front until it has approached the endwall to within less than one channel
height. The nonlinear terms were evaluated in a pseudo-spectral manner at each time
level, cf. Canuto et al. (1988). In the vertical direction, sixth-order compact finite
differences (Lele 1992) were utilized. Time integration was fully explicit and employed
the third-order low-storage Runge–Kutta scheme developed by Wray (1991). The
simulations were initialized with the fluid at rest, while the nominal discontinuities in
the initial concentration field were approximated by smooth error function profiles.
Further details regarding the numerical implementation as well as the validation of
the code can be found in Härtel et al. (2000).

Height ratios h/H of 1/3, 1/2, 2/3 and 1 were simulated. To determine the
relationship between Froude number and the density ratio R this latter parameter
was varied between 1 and 3 in steps of 0.5. For these simulations only the first quarter
of the channel (i.e. x = ±4) was simulated as the stage of constant velocity was
reached very fast after the ‘lock release’ and the simulation time could be abbreviated.
As the distance between the front and the end boundary was generally greater than
∆x = 3 the relative error in the front speed was well below 10−4 as determined by
Härtel et al. (2000). This meant that the simplification of shortening the channel to
decrease the computational time had no significant influence on the results. However,
the wave which eventually propagated ahead of the current reached the end of
the channel and was reflected. The simulation ended well before the reflected wave
reached the gravity current front.

For these simulations the grid had either 2.6× 105(1024× 256) grid points or more
than 106 (2048× 512) depending on the Grashof number. The Grashof number was
calculated and applied to the simulation as an initial condition. The simulations were
generally performed at values of the dimensionless parameters as if the fluid were
water and N = 1.40 s−1. Thus, the Grashof number varied from about Gr = 1.2× 108

to Gr = 3.4 × 108. A value of Sc = 1 was used throughout. While this was much
smaller than the experimental value, it was employed in order to avoid resolving the
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very narrow concentration boundary layers. This choice was justified on the basis of
tests performed by Härtel et al. (2000), which showed that an increase in Sc above
unity led to very minor changes in the flow dynamics.

In the simulations with the total channel length, a grid of more than 106 grid
points was used (4096 × 256). For the simulations with higher Grashof number this
grid was too coarse to give a stable solution. As a simulation with half the grid
width would have taken more than a month on the available workstations it was
decided to perform the simulation at a lower Grashof number. Compared to the
results gained with the higher Gr it was found that using a lower Grashof number of
about 0.75× 108 influenced the results for the front speed by less than 1%. This error
was assessed to be acceptable in order to obtain results for the generation of internal
waves and wave–gravity current interaction.

As mentioned above, to avoid discontinuities in the density field a diffusive boundary
layer was implemented between gravity current and ambient field. Therefore the
position of the front was assumed to be at the point where the local density had a
value of 85% of the assigned gravity current density.

5. Results
Thirty six experiments were run for the two values of N and four values of h/H

mentioned above and numerous values of ρC . In a few cases the length of the lock
(L) was doubled from 20 to 40 cm (see Appendix A). Some of the older data found
in Simpson (1997) were used also. In all cases the Reynolds numbers, based on the
height of the gravity current head, were large enough that viscous effects were not
important based on previous experience with the non-stratified case.

Figures 2, 3 and 4 show photographic sequences of the current and wave-field
evolution under different but representative initial conditions. Figures 2 and 3 were
taken from video sequences and show the flow evolution for large and small values
of R, respectively.

Figure 2 is the most straightforward to describe. As will be shown in detail later,
the gravity current is moving at a value of Fr greater than 1/π = 0.318, that is it
has an initial velocity that is faster than that of the linear, mode-one, long wave in
the wave guide, i.e. (NH/π). This state is usually referred to as being ‘supercritical’
(Long 1955). The head of the current and the wave are locked together and there is
no obvious wave generation behind the head. In the case shown here the initial Fr
is 0.438. This velocity is maintained for a distance of approximately 16h (see below),
and thereafter begins to slow. The Froude number becomes ‘critical’, i.e. Fr = 1/π, at
frame 602. Then as the current slows further the wave field begins to slowly separate
from the current head and move upstream. By frame 902 (where the position of the
leading edge of the current, x, is 155 cm and the time, t, is 22 s after initiation) there
is the slightest suggestion of a second, weak wave forming downstream of the head.
This sequence was typical of runs for which the initial Fr was supercritical in this
relatively short tank.

Figures 3 and 4 are typical of the evolution for an initial Fr that is ‘subcritical’, i.e.
Fr < 1/π. In figure 3 the value of Fr is 0.264 and in figure 4 it is 0.203. In figure 3 the
initial velocity is constant for a short distance (until frame 576, where the value of x
at which a deviation from a constant velocity occurs, Xtr , is 75 cm and the equivalent
time, Ttr , is 10.5 s) (the exact definitions of Xtr and Ttr are discussed below). The
initial x versus t trajectory is shown as one of the curves of figure 5, and a more
detailed one is shown in figure 6. Within a short time (frame 516 in figure 3) a second
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Figure 2. A time sequence of images taken from a video recording of a supercritical gravity current
propagation. Run 6, Fr = 0.438. The images are 60 frames or 2 s apart and run down the left column
followed by the right. The black lines join the points of maximum height on each isopychnal, i.e.
they are lines of constant phase.
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Figure 3. The same as figure 2 but it shows subcritical propagation. Case 19, Fr = 0.264.
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Figure 4. A time sequence of original photographs of a subcritical case with a value of Fr of 0.203,
showing details of the head structure and the waves generated by the gravity current motion. In
particular note the absence of strong mixing behind the head and in the main body of the current.

wave begins to form behind the first. This quickly grows in amplitude and interacts
back onto the current to form a second elevation of the dyed fluid. During this event
the lines of constant phase of the first wave have been tilting forward, indicating a
propagation of energy upstream, and by frame 636 it has begun to leave the current
head behind. Now the trough following the first wave of elevation interacts with the
current to slow and eventually stop it. The next wave, and its associated crest in the
current, now moves forward, followed by a third wave, and by frame 816 the second
wave crest has reached and reinforced the nose of the current so that the latter begins
to move forward again. This sequence is repeated as the faster propagation of the
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Figure 5. x versus t diagrams of the noise position for four cases. For Run 19 the definitions of
Xtr and Ttr are indicated.

second trough slows and stops the nose again (frame 936) followed by a new forward
motion initiated by the arrival of the third wave crest (frame 1056). A plot of x versus
t for this complex interaction of current and waves to be found in figure 6. Here,
as described above, the trajectory of the nose of the gravity current is seen to come
almost to rest as it interacts with the troughs of the waves generated by its motion.
The velocity of all the waves thus formed increases as they separate from the current,
with the first moving at a speed close to that of the mode-one long wave (NH/π).
All the trailing waves have almost identical speeds but the values are less than that
of the first wave crest.

Figure 4 shows the structure of the flow in more detail and in particular that of the
gravity current itself. It is the sequence from which figure 13.18 of Simpson (1997)
was taken. It shows how the current and the waves produced by its release interact at
a low value of R. In the first photograph of this sequence the current head and first
wave are propagating together but the wave is slowly moving ahead. In the second
the wave has separated from the current and the first trough is slowing the current
head. Figure 13.18 of Simpson (1997) fits between these two images. By the third
photograph the second wave has engulfed the leading head and the current begins to
move forward again. Finally this too slows and is caught by the next wave.

The details of the initial motion for four cases are shown in figure 5. On this
figure is also shown the manner in which the transition distance (Xtr) and time (Ttr)
were defined. The chain-dotted straight line has a slope that is 95% of the initial
velocity, 7.69 cm s−1 in experiment 19. The point where this line intersects the curve
of x versus t was considered to be the coordinates of the required transition values.
As long as one was consistent in the application of this criterion it was then possible
to determine the parametric dependence of these transition values.

From plots like those of figure 5 one can determine the initial velocity and hence
Fr for all cases. The numerical values are given in Appendix A and they are plotted
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Figure 6. A detailed study of the positional history (x/L versus Nt) of the gravity current nose
and three of the waves generated by its release. The maximum and minimum vertical excursions
of the second isopychnal from the bottom of figure 3 were used to indicate the positions of the
waves. For clarity many of the points that were used to construct this plot have been omitted. The
oscillatory progress of the nose is clearly demonstrated as it interacts with the internal waves created
by its motion. The speed of the mode-one long wave is plotted as NH/π. Case 19. N = 1.941 s−1,
Fr = 0.264, R = 1.397.

on figure 7 as a function of R. As was to be expected, Fr increases with both R and
h/H . The scaling used here, i.e. R, removes the direct dependence on N but not on
h/H . Also, varying L/h by a factor of two on any one curve produces points that
deviate from the fit by no more than the general trend. As noted on the figure, each
curve is represented well by the relationship

Fr = C +K log10 R. (6)

For all the curve fits shown here the correlation coefficient is between 0.997 and 1.
However, note a slight deviation for the two lower values of h/H and R close to
unity. The values of C and K for each curve are given on figure 7. It is now possible
to plot C and K as functions of h/H and these are shown on figures 8(a) and 8(b).
It is impossible to choose between these two ways of plotting the results. In the first
(figure 8a) one finds

C = a+ b log10(h/H), (7)

and

K = c+ d log10(h/H). (8)

In the second (figure 8b)

C = f(h/H)g, (9)

and

K = m(h/H)n. (10)

For the experimental data: a = 0.270, b = 0.246, c = 0.935 and d = 0.307 while
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Figure 7. Fr versus R for all the experiments and computations performed during this study. Here
an E and solid symbols represent the experiments and a C and an open point the computations.
Errors are of the order of the deviations of the points from the fitted straight lines.

f = 0.277, g = 0.530, m = 0.938 and n = 0.157. In all cases the correlation coefficient
of each curve fit is between 0.92 and 0.99. Using either of these sets of functions it
is possible, in principle, to reduce all the curves of figure 7 to one straight line on
a semi-logarithmic plot. However, the functional relationships given above are really
all that are needed to calculate Fr for any combination of R and h/H . Similar results
have been found for the numerical data and these are treated in what follows. Further
comments on these results are to be found in § 5.

Numerical solutions for sub- and super-critical conditions that are broadly equiv-
alent to figures 3 and 4 are shown in figures 9 and 10. It can be seen that many
of the characteristics of these solutions are similar to those found in the laboratory
experiments. The major difference is in the details of the turbulent structures behind
the head. In the two-dimensional numerical solutions these cannot evolve further into
three-dimensional turbulence and hence maintain a characteristic Kelvin–Helmholtz
vortex morphology with concommitant entrainment into the body of the current.
Also, the spanwise ‘lobe and cleft’ structure seen at the head of the current in the
experiments must be missing in the numerical solutions. Despite these differences the
numerical x versus t trajectories give initial velocities that are virtually identical to
those measured from the experiments. These are indicated by the open symbols on
figure 7. To avoid confusion the curve fits for these points are not given on the fig-
ure but they also have the logarithmic form given to equation (6). The corresponding
values of C and K , for the four values of h/H considered, are plotted on figures
8(a) and 8(b) and in this case too either a logarithmic or a power-law fit to the
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Figure 9. Sequence of density fields for a supercritical simulation. Here and in figure 10 the vertical
and horizontal axes are made dimensionless with H/2. Fr = 0.489, h/H = 2/3. The time between
frames is 0.90 s, N = 1.981 s−1 and H = 15 cm.

data is justified, but see § 5. For the numerical data, a = 0.274, b = 0.284, c = 0.925,
d = 0.240, f = 0.284, g = 0.634, m = 0.927 and n = 0.122 in equations (7)–(10).

Comparison between the laboratory experiments and the limiting result for large
R (i.e. FrLR , equation (4)) is presented in figure 11. There, as might be expected,
agreement is best at large R except for the case of h/H = 1/3, where it seems that
the two curves will asymptote to one another beyond the range of R covered here.
For the two larger values of h/H equation (4) is a good approximation to the actual
values of Fr for R as small as 2.0. The trend with h/H suggests that for very small
values the approximation of equation (4) will never be adequate and that, most likely,
some other formulation must be used.

As shown on figure 5 the constant-velocity phase lasted a finite time or distance.
Assuming that this phase could be considered terminated when the average velocity
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Figure 10. Sequence of density fields for a subcritical simulation. Fr = 0.219, h/H = 1/3. The time
between frames is 1.80 s, N = 1.468 s−1 and H = 15 cm. The line crossing the last 5 frames is an
attempt to indicate the propagation of the first mode-one wave to be released by the current with
Fr = 0.308 which is approximately equal to 1/π = 0.318.
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Figure 11. Comparison between the experimental results for Fr versus R and equation (4) which is
thought to describe the behaviour for large R. The solid lines and points are the experiments and
the dotted line equation (4) for the various values of h/H .

since inception was 95% of the maximum velocity it was possible to measure Xtr

and Ttr (figure 5) for all experiments. These results could be plotted in two ways.
The first, and most obvious, was to plot the dimensionless Xtr and Ttr versus the
true independent variable R. The clear-cut way to make Ttr dimensionless was to
form the product NTtr . However there were two ways to make Xtr dimensionless,
i.e. to divide by either h or H . The best choice will be introduced in what follows.
Plotting NTtr directly against the independent variable R resulted in separate curves
for the four values of h/H . Each had a maximum close to the value of R at which
Fr = 1/π, i.e. at which the flow was critical. This result suggested that a plot of
NTtr vs. Fr would be more useful, even though Fr is a dependent variable, and this
turned out to be correct. Then, further data manipulation shows that it is possible to
reduce the resulting four curves to one by plotting NTtrH/h vs. Fr, figure 12. Here,
also, the maximum occurs close to the critical state. for subcritical states NTtrH/h
tends to zero as Fr decreases, while for the supercritical states it is decreasing as Fr
increases. Using the insight gained from this exercise one can make further progress
by plotting Xtr/h vs. Fr, since using the length scale h turns out to be the best way
to make Xtr dimensionless. Using H results in four distinct curves while h suggested
here gives only one (figure 13). Here, for supercritical flows Xtr/h is constant, at a
value of 16± 3, while it increases for increasing subcritical Fr. Further comment on
these results is given in § 5.

Simpson (1997) hypothesized that the combined flow of gravity current and internal
wave, as outlined above, was similar to the stratified flow over a solid object, as studied
by Long (1955). In the latter the internal wavelength (λ) between the first two wave
crests generated by stratified flow over an object was defined and a theoretical
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solid lines have been added as a visual guide to the reader in order to show the data trend.

expression derived as a function of Fr:

(λ/H)L = 2π/(Fr−2 − n2π2)1/2, (11)

where n is the vertical mode number and the subscript L indicates that this is Long’s
(1955) result. The definition of λ for the present case is shown on the inset on
figure 14. This quantity was measured for all cases where an obvious second wave
crest could be identified before the conclusion of the experiment, i.e. before the first
wave reflected from the endwall and interacted back with the advancing current. The
results are shown in figure 14 for both the present experiments and computations, and
the experiments of Simpson (1997). A curve identifying equation (11), for n = 1, is
included for comparison. The chain-dotted curve is added as a guide to visualization
of the trend and is given, approximately, by [λ/H]L/2.

Long (1955) also defined, for stratified flow over an obstacle of finite height a,
regions in [Fr, a/H] space where such waves, with various vertical mode numbers,
should be excited. These regions are shown in figure 15 together with the measure-
ments from Simpson (1997) and the present experiments and computations. From
both of these comparisons it appears that the analogy between flow over a solid ob-
ject and that generated by the motion of the time-varying surface shape of a gravity
current is of some use but is not exact.

6. Discussion and conclusions
Certain characteristics of the propagation of lock-release gravity currents in a

linearly stratified fluid have been measured. These include the Froude number of the
initial constant velocity motion, the time and distance from the origin at which the
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velocity begins to decrease and the regime in which a strong internal wave response
is generated.

The initial, constant velocity, V , as measured by the Froude number, Fr = V/NH ,
has been found to have a simple dependence on the input parameters, ρb, ρC , ρ0,
h/H and L/h. For the ranges used here there appears to be no dependence on L/h.
The first three parameters can be combined into the most significant dimensionless
quantity:

R = N2
C/N

2, where N2
C = g(ρC − ρ0)/ρ0H, N2 = g(ρb − ρ0)/ρ0H,

which removes the direct dependence on N and measures the relative strength of
the current and density stratification. Then Fr depends logarithmically on R, over
the range of R considered, while the coefficients of this dependence, C and K , vary
logarithmically, or as a power law, with h/H . Thus once R and h/H are fixed a
calculation of Fr follows immediately. Note however a slight deviation from this
result for the two lowest values of h/H and R close to unity for both the physical
and numerical experiments. We suspect that this is a real effect and not a result of
experimental inaccuracies.

The characteristics of this initial motion are described well by a two-dimensional
computation with a no-slip boundary condition. The appearance of the head of
the current is very different from that seen in the experiments yet the quantitative
agreement on front velocity between the two is remarkable. For a series of inviscid
computations with a slip boundary condition (S. B. Dalziel, private communication)
the agreement was not as good and suggests that experiments at a free surface,
where the slip condition is likely to be more appropriate, should be carried out for
comparison with the latter computations. Such experiments will be performed and
reported in the future. These two observations suggest that while the details of head
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structure are not important to a calculation of the gross features of the flow, the
nature of the boundary condition at the wall is significant.

The results contained in equation (7)–(10) are of some interest. In particular,
consider the limiting behaviour of C and K , and hence Fr, as h/H becomes small,
for all values of R. In the case of equations (7) and (8) Fr becomes zero at a finite
but very small, experimentally unobtainable, value of h/H , while for equations (9)
and (10) it becomes zero only at h/H = 0. For all practical purposes the two results
are, in fact, indistinguishable. It is not completely clear at this point whether this
means that the actual Fr tends to zero or that the length of the region of constant
velocity goes to zero with a finite Fr, i.e. a region of constant Fr can no longer be
defined. The results shown in figures 12 and 13 suggest that both Xtr and Ttr are
both tending to zero in this limit so that the later possibility is the one that is most
likely to be correct. In turn, this observation suggests that it will not be possible to
use the present results to calculate the constant-velocity phase of current motion at
very small values of h/H except in the very restrictive way discussed above, i.e. for
short distances and times only. Also, these results show that under all but the most
extreme conditions the initial flow will be subcritical and will rapidly evolve to a
state where wave motion and interactions are the most likely outcome. This state can
only be described qualitatively by the work presented here, as for example in figure 6.
Furthermore, the results shown in figure 11 suggest that equation (4) will also be
inadequate and that the assumptions used to generate it will no longer hold in this
same limit.



390 T. Maxworthy, J. Leilich, J. E. Simpson and E. H. Meiburg

0.5

V/NH

a
H

0

0.4

0.3

0.2

0.1

Long’s barrier

0.40.30.20.1

1st-mode waves

B
D

ensity

V

a

H

A

1
2p

1
p

Figure 15. Regime diagram in (a/H, V/NH) space for the existence of well-defined waves. The
diagram itself and the black and open points are from Simpson (1997) and the details are described
there. The smaller black points are from the present experiments. ‘Long’s Barrier’ indicates the
theoretical limit for wave generation over a solid object of finite amplitude. Note that the criterion
Fr 6 1/π seems to be a better measure of the region in which waves can be generated by an object
that changes shape as it propagates.

Further study of figures 12 and 13 shows quite clearly, as alluded to above, that
the length of the dammed region (L), for the range considered, does not seem to play
a role in determining the transition length, as it does in the classical case (Rottman
& Simpson 1983). This is true even for large R where the constant-velocity regime
appears to be approaching that of the classical gravity current. Now the appropriate
length scale is the height of the damned region. There is a change in behaviour at the
critical value of Fr. For supercritical, increasing Fr the transition distance remains a
constant multiple of h while the transition time decreases. An explanation in terms
of a reflected wave, as in the classical gravity current, is unlikely to be relevant. For
the subcritical case both the dimensionless Xtr and Ttr increase with increasing Fr.
The major difference between the two types of behaviour is that in the latter case
the slowing is due to the interaction with the trough of the first generated wave,
while in the former it appears to be due simply to the fact that an energetic
primary wave has to be generated and this removes enough energy from the
current itself to slow it. Based on this simple argument the trend of Xtr and Ttr
in the subcritical regime can be rationalized. When Fr is small the wave generated by
the initial release has a speed of order NH/π so that it quickly catches up with the
slowly moving current, slows it further and Xtr and Ttr are small. As Fr increases, the
difference between the current speed and the wave speed (which remains constant at
NH/π) decreases so that Xtr and Ttr increase. As the two speeds approach equality,
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i.e. Fr approaches 1/π, this argument would suggest that the current speed would
never change. Clearly other effects arise before this can happen and more detailed
experiments are needed to sort out the relative importance of the various mechanisms
discussed here.

Based on all of the results presented here it appears that the critical condition
Fr = 1/π delineates two regions of quite different flow. On the subcritical side, wave
generation dominates the dynamical picture. The release of the current not only
generates the waves but its subsequent motion is, in turn, greatly affected by them.
On the other hand a release in the supercritical regime generates at least one initial
wave but subsequent waves, if they exist, are weak and do not appear to affect
further current motion. This latter statement is subject to possible revision since the
experimental tank may not be long enough to observe all the interactions that might
be possible in a longer one.
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Franz Durst, Director of the LSTM, Friedrich Alexander Universtät, Erlangen-
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presented here. The comments of the referees and discussions with Professors H.
Huppert of the University of Cambridge and M. Ungarish of the Technion, Haifa are
acknowledged with thanks.
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Appendix A
The experimental parameters are given in table 1.

Expt h/H AR = L/h ρb ρC ρ0 N NC R Fr NTtr Xtr/h

1 2/3 2 1.032 1.035 1.004 1.351 1.421 1.107 0.255 24 9.18
2 2/3 2 1.033 1.045 1.004 1.374 1.634 1.414 0.375 33.7 18.96
3 2/3 2 1.035 1.090 1.005 1.397 2.352 2.833 0.637 18.7 17.87
4 1/3 4 1.044 1.070 1.005 1.593 2.057 1.667 0.317 16.1 15.31
5 1/3 4 1.037 1.119 1.003 1.489 2.750 3.412 0.565 9.2 15.59
6 1/3 4 1.034 1.075 1.004 1.398 2.151 2.367 0.438 12.4 16.29
7 1/3 4 1.034 1.065 1.004 1.398 1.993 2.033 0.375 12.9 14.51
8 1/3 4 1.033 1.037 1.005 1.350 1.443 1.143 0.182 12.7 6.93
9 1/3 4 1.033 1.049 1.005 1.350 1.702 1.589 0.290 18 15.66

10 1/3 4 1.036 1.045 1.003 1.467 1.655 1.273 0.232 17.6 12.25
11 1/3 4 1.034 1.034 1.003 1.422 1.422 1.000 0.131 9.9 3.89
12 1/3 4 1.035 1.048 1.004 1.421 1.703 1.435 0.269 17.1 13.80
13 2/3 4 1.064 1.099 1.008 1.907 2.433 1.629 0.437 16.6 10.88
14 2/3 2 1.065 1.139 1.008 1.932 2.917 2.280 0.555 15.5 12.90
15 1/3 4 1.065 1.094 1.006 1.958 2.390 1.490 0.287 19 16.36
16 1/3 4 1.064 1.072 1.006 1.942 2.080 1.147 0.190 15.5 8.84
17 1/3 4 1.067 1.112 1.005 2.001 2.638 1.738 0.327 19.6 19.23
18 1/3 4 1.066 1.163 1.008 1.945 3.170 2.655 0.463 13.3 18.47
19 1/3 4 1.065 1.088 1.007 1.941 2.294 1.397 0.264 19.6 15.52
20 1/3 4 1.065 1.122 1.006 1.958 2.746 1.966 0.379 15.3 17.40
21 1/3 4 1.067 1.082 1.006 2.000 2.235 1.249 0.233 10.4 7.27
22 1/3 4 1.067 1.079 1.006 2.000 2.181 1.189 0.210 14.2 8.95
23 1/3 8 1.068 1.085 1.008 1.965 2.232 1.291 0.249 29 21.66
24 1/2 8/3 1.067 1.069 1.008 1.948 1.983 1.036 0.211 18.3 7.72
25 1/2 8/3 1.066 1.082 1.008 1.940 2.202 1.288 0.295 28.9 17.05
26 1/2 8/3 1.067 1.115 1.008 1.957 2.639 1.819 0.415 20.6 17.10
27 1/2 8/3 1.069 1.181 1.007 2.007 3.363 2.808 0.588 20.1 23.64
28 1/2 8/3 1.035 1.042 1.004 1.410 1.582 1.259 0.291 28.2 16.41
29 1/2 8/3 1.035 1.040 1.003 1.444 1.555 1.159 0.267 28.1 15.01
30 1/2 16/3 1.036 1.054 1.003 1.456 1.827 1.575 0.382 18.3 13.98
31 1/2 8/3 1.068 1.139 1.007 1.990 2.927 2.162 0.483 15.3 14.78
32 1 4/3 1.068 1.072 1.009 1.947 2.019 1.075 0.295 60 17.70
33 1 8/3 1.068 1.104 1.007 1.990 2.505 1.584 0.448 29 12.99
34 1 4/3 1.034 1.072 1.004 1.386 2.103 2.302 0.597 21.5 12.84
35 1 4/3 1.034 1.094 1.004 1.398 2.421 3.000 0.701
36 2/3 2 1.067 1.067 1.0075 1.965 1.965 1.000 0.230

Table 1.

Appendix B. Test of a solitary wave explanation for the observed motion of
the current head

It was thought that a different presentation of the velocity data might be possible
based on the idea that the head wave, for the supercritical cases at least, was simply a
large-amplitude, nonlinear internal solitary wave.† If this were true then it might be
expected that, as in the cases of the KdV or Benjamin–Ono equations for example, a

† Note that unlike cases with a strongly nonlinear density distribution, as in e.g. Maxworthy
(1980), a linear profile can only support solitary waves if non-Boussinesq effects are important.
However, it was argued in Amen & Maxworthy (1980) that such effects seemed to explain their
results. This suggestion is placed in doubt by the present results.
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simple linear deviation from the long wave speed would be appropriate:

V = [NH/π][1 + β(a/H)]

or

πFr = 1 + β(a/H),

where a is the amplitude or height of the gravity current head during the constant-
velocity phase (see figure 15) and β should be a constant. The amplitudes of the
waves were measured and β = (πFr − 1)(H/a) plotted against both R and Fr. Only
plotting against Fr reduced the data in a consistent way, curiously, for both the sub-
and supercritical cases (figure 16), so that

a/H = (πFr − 1)/(4.72 + 9.72 log10 Fr). (B 1)

It is clear that the original conjecture that solitary wave ideas might explain the
data is not correct, since not only is β not constant but the data reduction fits the
subcritical results too. Finally, since both Fr and a/H are dependent variables this
reduction can only be used in conjunction with equations (7)–(10) to calculate Fr,
for given R and h/H , and then using equation (B1) to find a/H for the calculated
Fr.
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